Munc18-1 Promotes Large Dense-Core Vesicle Docking
نویسندگان
چکیده
منابع مشابه
Munc18-1 Promotes Large Dense-Core Vesicle Docking
Secretory vesicles dock at the plasma membrane before Ca(2+) triggers their exocytosis. Exocytosis requires the assembly of SNARE complexes formed by the vesicle protein Synaptobrevin and the membrane proteins Syntaxin-1 and SNAP-25. We analyzed the role of Munc18-1, a cytosolic binding partner of Syntaxin-1, in large dense-core vesicle (LDCV) secretion. Calcium-dependent LDCV exocytosis was re...
متن کاملRole of Munc18-1 in synaptic vesicle and large dense-core vesicle secretion.
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex formation between a vesicle and the target membrane is a central aspect of probably all vesicle fusion reactions. The sec1/munc18 (SM) protein family is also involved in membrane trafficking and fusion events. However, in contrast with the consensus on SNARE protein function, analysis of SM proteins in differe...
متن کاملSynaptic Vesicle Docking: Sphingosine Regulates Syntaxin1 Interaction with Munc18
Consensus exists that lipids must play key functions in synaptic activity but precise mechanistic information is limited. Acid sphingomyelinase knockout mice (ASMko) are a suitable model to address the role of sphingolipids in synaptic regulation as they recapitulate a mental retardation syndrome, Niemann Pick disease type A (NPA), and their neurons have altered levels of sphingomyelin (SM) and...
متن کاملMicroRNA exocytosis by large dense-core vesicle fusion
Neurotransmitters and peptide hormones are secreted into outside the cell by a vesicle fusion process. Although non-coding RNA (ncRNA) that include microRNA (miRNA) regulates gene expression inside the cell where they are transcribed, extracellular miRNA has been recently discovered outside the cells, proposing that miRNA might be released to participate in cell-to-cell communication. Despite i...
متن کاملMunc18-1 Protein Molecules Move between Membrane Molecular Depots Distinct from Vesicle Docking Sites*
Four evolutionarily conserved proteins are required for mammalian regulated exocytosis: three SNARE proteins, syntaxin, SNAP-25, and synaptobrevin, and the SM protein, Munc18-1. Here, using single-molecule imaging, we measured the spatial distribution of large cohorts of single Munc18-1 molecules correlated with the positions of single secretory vesicles in a functionally rescued Munc18-1-null ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neuron
سال: 2001
ISSN: 0896-6273
DOI: 10.1016/s0896-6273(01)00391-9